
0

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

3

3.1

3.2

3.3

3.4

3.5

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Table	of	Contents
Introduction

Getting	Started

Build

Sophia	API

Common	Workflow

Configuration

How	It	Works

Examples

BSD	License

Administration

Version

Managing	Databases

Anti-Caching

Persistent	Caching

Persistent	RAM	Storage

LRU	Mode

AMQ	Filter

Compession

Point-in-Time	Views

Snapshot

Backup	and	Restore

Compaction

Monitoring

DBMS	Integration

CRUD

Transactions

Deadlocks

Asynchronous	Reads

Upsert

Cursors

Configuration

Sophia

Memory

Scheduler

Compaction

Performance

Metric

View

Write	Ahead	Log

Sophia	2.1	Manual

1

4.9

4.10

5

5.1

5.2

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Database

Backup

Architecture

v1.2

v1.1

API

sp_env

sp_document

sp_setstring

sp_setint

sp_getobject

sp_getstring

sp_getint

sp_open

sp_destroy

sp_error

sp_poll

sp_drop

sp_set

sp_upsert

sp_delete

sp_get

sp_cursor

sp_begin

sp_commit

Sophia	2.1	Manual

2

Sophia	2.1	Manual
Welcome	to	the	Sophia	2.1	Manual.

Sophia	is	advanced	Embeddable	Transactional	Key-Value	Storage.	Open-Source,	available	free	of	charge	under	terms
of	BSD	License.

This	manual	is	also	available	in	PDF	.

RAM-Disk	Hybrid

Sophia	has	unique	hybrid	architecture	that	was	specifically	designed	to	efficiently	store	data	using	the	combination	of
HDD,	Flash	and	RAM.

Sophia	allows	to	distinct	Hot	(read-intensive)	and	Cold	data.

The	data	storage	engine	was	created	as	a	result	of	research	and	reconsideration	primary	algorithmic	constraints	of
Log-file	based	data	structures.

Write	and	Range	Scan	optimized.	It	can	efficiently	work	with	terrabyte-sized	datasets.

Language	bindings

Bindings	for	the	most	common	languages	are	available	here.

v2.1	features

Full	ACID	compliancy
Multi-Version	Concurrency	Control	(MVCC)	engine
Pure	Append-Only
Multi-threaded	(Both	client	access	and	near-linear	compaction	scalability)
Multi-databases	support	(Single	environment	and	WAL)
Multi-Statement	and	Single-Statement	Transactions	(Multi-databases)
Serialized	Snapshot	Isolation	(SSI)
Persistent	RAM	Storage	mode
Persistent	Caching	mode
Anti-Cache	Storage	mode
LRU	Storage
Separate	storage	formats:	key-value	(default),	document	(keys	are	part	of	value)

Sophia	2.1	Manual

3Introduction

http://sophia.systems/drivers.html
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Optional	AMQ	Filter	(Approximate	member	query	filter)	based	on	Quotient	Filter
Async	and	sync	reads	(Callback	triggered	vs.	blocking)
Upsert:	optimized	write-only	'Update	or	Insert'	operation
Consistent	Cursors
Prefix	search
Prefix	compression	(Using	key-part	duplicates)
Point-in-Time	Views
Online/Versional	database	creation	and	asynchronous	shutdown/drop
Asynchronous	Online/Hot	Backup
Compression	(Per	region,	no-holes,	supported:	lz4,	zstd)
Compression	for	Hot	and	Cold	data	(distinct	compression	types)
Meta-data	Compession	(By	default)
Optimizations	for	faster	recovery	with	big	databases	(Snapshot)
Easy	to	use	(Minimalistic	API)
Easy	to	integrate	into	a	DBMS	(Native	support	of	using	as	storage	engine)
Easy	to	write	bindings	(FFI-friendly,	API	designed	to	be	stable	in	future)
Easy	to	built-in	(Amalgamated,	compiles	into	two	C	files)
Event	loop	friendly
Zero-Configuration	(Tuned	by	default)
Implemented	as	small	C-written	library	with	zero	dependencies
Carefully	tested
Open	Source	Software,	BSD	Licensed

Sophia	2.1	Manual

4Introduction

Build
Sophia	has	no	external	dependencies.

Run	make	to	generate	sophia.c	and	sophia.h	and	build	the	library.

make

Following	command	can	be	used	to	compile	the	library	in	your	project:

cc	-O2	-DNDEBUG	-std=c99	-pedantic	-Wall	-Wextra	-pthread	-c	sophia.c

To	build	and	run	tests:

cd	test
make
./sophia-test

Sophia	2.1	Manual

5Build

Sophia	API
Sophia	defines	a	small	set	of	basic	methods	which	can	be	applied	to	any	database	object.

All	API	declarations	are	stored	in	a	separate	include	file:	sophia.h

Configuration,	Control,	Transactions	and	other	objects	are	accessible	using	the	same	methods.	Methods	are	called
depending	on	used	objects.	Methods	semantic	may	slightly	change	depending	on	used	object.

All	functions	return	either	0	on	success,	or	-1	on	error.	The	only	exception	are	functions	that	return	a	pointer.	In	that	case
NULL	might	indicate	an	error.

sp_error()	function	can	be	used	to	check	if	any	fatal	errors	occured	leading	to	complete	database	shutdown.	All	created
objects	must	be	freed	by	sp_destroy()	function.

All	methods	are	thread-safe	and	atomic.

Please	take	a	look	at	the	API	manual	section	for	additional	details.

sp_env()
sp_document()
sp_setstring()
sp_setint()
sp_getobject()
sp_getstring()
sp_getint()
sp_open()
sp_destroy()
sp_error()
sp_poll()
sp_drop()
sp_set()
sp_upsert()
sp_delete()
sp_get()
sp_cursor()
sp_begin()
sp_commit()

Sophia	2.1	Manual

6Sophia	API

Common	Workflow
Basic	workflow	is	simple:

1.	 create	sophia	environment	sp_env()
2.	 set	options	using	sp_setint(),	sp_setstring(),	define	sophia.path
3.	 define	databases
4.	 sp_open()	environment
5.	 do	transaction	processing	using	sp_document(),	sp_set(),	sp_get(),	sp_delete(),	sp_upsert(),	sp_cursor(),

sp_begin(),	sp_commit(),	sp_destroy()
6.	 on	finish:	sp_destroy()	the	environment	object

void	*env	=	sp_env();
sp_setstring(env,	"sophia.path",	"./storage",	0);
sp_setstring(env,	"db",	"test",	0);
sp_open(env);
void	*db	=	sp_getobject(env,	"db.test");
/*	do	transactions	*/
sp_destroy(env);

Sophia	2.1	Manual

7Common	Workflow

Sophia	2.1	Manual

8Common	Workflow

Configuration
Every	Sophia	configuraton,	monitoring,	database	creation,	etc.	is	done	using	sysctl-alike	interface.

Operations	sp_setstring(),	sp_getstring(),	sp_setint(),	sp_getint(),	sp_getobject()	and	sp_cursor()	are	used	to	set,	get
and	iterate	through	configuration	fields.

Most	of	the	configuration	can	only	be	changed	before	opening	an	environment.

Any	error	description	can	be	accessed	through	sophia.error	field.

Set	example:

void	*env	=	sp_env()
sp_setstring(env,	"sophia.path",	"./sophia",	0);
sp_open(env);

Get	example:

int	error_size;
char	*error	=	sp_getstring(env,	"sophia.error",	&error_size);
if	(error)	{
				printf("error:	%s\n",	error);
				free(error);
}

To	get	a	list	of	all	system	objects	and	configuration	values:

void	*cursor	=	sp_getobject(env,	NULL);
void	*ptr	=	NULL;
while	((ptr	=	sp_get(cursor,	ptr)))	{
				char	*key	=	sp_getstring(ptr,	"key",	NULL);
				char	*value	=	sp_getstring(ptr,	"value",	NULL);
				printf("%s",	key);
				if	(value)
								printf("	=	%s\n",	value);
				else
								printf("	=	\n");
}
sp_destroy(cursor);

Sophia	2.1	Manual

9Configuration

How	It	Works
To	describe	how	Sophia	works	internally,	we	will	use	a	simple	case	as	a	guiding	example:

a.	fill	our	empty	database	with	the	keys	in	random	order
b.	read	all	stored	keys	in	original	order

Please	take	a	look	at	the	Architecture	manual	section	for	more	details.

(a)	Fill	empty	database
We	will	start	by	inserting	1	million	random	keys.

During	first	200K	Set	operations,	inserted	keys	first	go	to	the	sorted	in-memory	index.	Second,	in	order	to	maintain
persistence,	exact	operation	information	is	written	to	write-ahead	log.

At	this	point,	we	have	100K	keys	stored	in-memory	and	the	same	amount	of	keys	written	to	write-ahead	log.

We	will	continue	to	insert	keys	from	200K	to	500K.

When	in-memory	index	becomes	too	large,	Sophia	scheduler	makes	an	attempt	to	move	this	index	from	memory	to
disk.	In-memory	index	dump	stored	on-disk	is	called	Branch.	To	save	the	branch,	a	new	file	is	created.	Let's	call	it	db	file
for	now.

Branch	creation	process	is	launched	in	the	background	by	one	of	the	dedicated	Sophia	worker	threads.	During	the
process,	Sophia	creates	a	second	in-memory	index	to	reduce	an	effect	on	parallel	going	Set	operations.

Inserts	are	now	silently	go	to	the	second	index.

Sophia	2.1	Manual

10How	It	Works

When	the	Branch	creation	process	is	completed,	first	in-memory	index	got	freed.

Yet,	we	still	keep	on	to	inserting	our	keys	from	500K	to	700K.

The	circle	of	in-memory	index	overrun	and	branch	creation	continues	until	the	number	of	created	branches	becomes	too
big.	All	branches	are	appended	to	the	end	of	db	file.

Sophia	2.1	Manual

11How	It	Works

When	the	number	of	branches	hit	some	watermark	number,	Sophia	scheduler	starts	Compaction	process	for	this	db
file.	During	the	compaction	process,	all	keys	stored	in	each	branch	are	merged,	which	leads	to	creation	of	one	or	more
new	db	files.

Now	we	are	ready	to	introduce	new	important	term:	each	pair	of	in-memory	indexes	and	its	associated	db	files	is	called
a	Node	in	Sophia.

Sophia	2.1	Manual

12How	It	Works

So	basically,	a	Node	represents	a	Sophia	database	file	which	stores	a	range	of	sorted	keys.	Those	keys	are	stored	in
one	or	more	Branches.

When	a	Node	becomes	too	big	(in	terms	of	Branch	numbers),	it	splits	into	two	or	more	Nodes	by	background	thread.

It	is	important	that	each	Node	key	is	strictly	separated	from	the	other	keys.	It	is	also	crucial	that	Node	in	Sophia	is	a	unit
of	such	background	operations	like:	Branch	or	Compaction,	Gc,	Backup	and	so	on.	Several	nodes	can	be	processed	in
parallel	by	Sophia	worker-threads.

But	let's	return	to	our	case.

At	this	point	we	have	one	node	(automatically	created	during	database	deploy),	which	has:	(a)	in-memory	index	with
some	keys	in	it,	(b)	several	Branches	(previously	sorted	in-memory	index	dumps)	are	saved	in	the	node	db	file.	All
operations	have	been	saved	in	WAL	in	serial	order.

Since	the	number	of	branches	became	too	big,	Sophia	scheduler	starts	the	Compaction	process	and	creates	two	new
Nodes.

So	basically,	each	new	created	node	represents	a	half	of	sorted	keys	stored	in	original	node.	This	applies	also	to	in-
memory	index.	Keys	inserted	into	origin	in-memory	index	during	compaction	must	be	moved	to	new	node	indexes.	This
process	runs	in	parallel	with	on-going	Sets,	so	efficient	implementation	is	tricky.

When	compaction	process	is	finished,	origin	node	is	deleted	too,	and	new	created	nodes	are	silently	inserted	into	in-
memory	Node	Index.

Sophia	2.1	Manual

13How	It	Works

A	Node	Index	is	used	for	correct	routing	during	key	insert	or	search.	Sophia	is	aware	about	min/max	of	each	node,	so
this	information	is	used	during	a	Node	search.

We	still	continue	to	insert	our	keys.	Now	range	varies	from	700K	to	1M	range.

The	circle	of	branch/compaction	and	node	creation	continues,	and	by	the	end	of	insertion	case	our	database	consists	of
four	nodes.

Sophia	2.1	Manual

14How	It	Works

Sophia	is	designed	to	efficiently	utilize	available	memory.

If	there	is	more	memory	available,	then	branch/compaction	operations	become	more	infrequent	and	system	becomes
more	disk-efficient.	Best	performance	can	be	obtained	with	no	memory	limit	set.	Sophia	is	Hard-Drive	(and	Flash)
friendly,	since	all	operations	are	delayed	and	executed	in	large	sequential	reads	and	writes,	without	overwrite.

If	there	is	a	memory-limit	set,	Sophia	scheduler	is	aware	about	nodes	that	have	biggest	in-memory	indexes.	These	are
processed	first	to	efficiently	free	memory.

(b)	Random	read
We	start	to	read	1	million	keys	in	origin	order,	which	is	random.

Sophia	2.1	Manual

15How	It	Works

During	the	Get	(search),	only	branch	regions	that	have	min	<=	key	<=	max	are	examined.	When	the	node	found,	search
is	performed	in	following	structures:

1.	 first	in-memory	index
2.	 second	in-memory	index
3.	 each	node	branch:	strictly	starting	from	the	last	one

Branch	format	is	highly	optimized	to	reduce	disk	access	during	reads.	Internally	each	Branch	consist	of	Region	Index
and	Sorted	Regions.

So	basically,	this	structures	splits	whole	Branch	range	of	keys	into	smaller	regions.	Region	Index	holds	information
about	every	Regions	stored	in	the	Branch,	their	min/max	values	and	meta-data.

Region	Indexes	are	loaded	into	memory	during	database	opening.	They	allow	to	find	exact	region	to	read	from	disk
during	search	and	to	reduce	overall	search	times.

There	is	a	game	between	available	memory,	a	number	of	Branches	and	Search	times.	Each	additional	branch	says	that
there	is	a	possible	additional	disk	access	during	the	search.	In	the	same	time,	it	is	unable	to	maintain	memory	limits
without	branching,	because	compaction	times	are	greater	than	possible	rate	of	incoming	data.

Sophia	is	designed	to	be	read	optimized.	There	is	a	high	possibility	that	latest	created	Branches	(hot	data)	are	stored	in
the	file	system	cache.	Scheduler	is	aware	about	nodes	which	have	largest	in-memory	Key	Index	and	biggest	number	of
Branches.	These	are	processed	first.

Ideally,	Sophia	scheduler	tries	to	make	that	each	node	will	have	1	branch.	In	that	case:	O(1)	disk	seek	time	is
guaranteed	during	search.

Sophia	2.1	Manual

16How	It	Works

Examples

name link

set,	get,	delete	example github

Transactions	example github

Cursor	example github

Point-in-Time	View	example github

Multi-part	keys	example github

Upsert	example github

Sophia	2.1	Manual

17Examples

https://github.com/pmwkaa/sophia/blob/master/example/crud.c
https://github.com/pmwkaa/sophia/blob/master/example/transaction.c
https://github.com/pmwkaa/sophia/blob/master/example/cursor.c
https://github.com/pmwkaa/sophia/blob/master/example/view.c
https://github.com/pmwkaa/sophia/blob/master/example/multipart.c
https://github.com/pmwkaa/sophia/blob/master/example/upsert.c

Sophia	License
Copyright	(C)	Dmitry	Simonenko	(pmwkaa@gmail.com)

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	AUTHORS	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,
BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	AUTHORS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS
INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT
LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Sophia	2.1	Manual

18BSD	License

Version
Sophia	has	two	versions:	release	version	and	storage	format	version.

Release	version	is	the	current	version	number.	Sophia	uses	a	common	practice	for	version	naming:
major.minor.latest_fix_number.

Current	release	version	can	be	read	from	sophia.version	variable.

Storage	format	version	follows	the	same	rule.	The	number	of	version	is	equal	to	the	previous	Sophia	version,	that
contains	modified	storage	format.

Current	storage	format	version	can	be	read	from	sophia.version_storage	variable.

Any	Sophia	releases	are	storage	format	compatible	if	storage	versions	are	equal.

Sophia	2.1	Manual

19Version

Database	creation
Database	can	be	created,	opened	or	deleted	before	or	after	environment	startup.	To	create	a	database,	new	database
name	should	be	set	to	db 	configuration	namespace.	If	no	database	exists,	it	will	be	created	automatically.

Sophia	v2.1	does	not	save	database	scheme	information.

By	default	databases	are	created	in	sophia.path/database_name	folder.	It	is	possible	to	set	custom	folder	per	database
using	db.database_name.path	It	might	be	useful	to	separate	databases	on	different	disk	drives.

Create	or	open	database	before	environment	start:

void	*env	=	sp_env();
sp_setstring(env,	"sophia.path",	"./storage",	0);
sp_setstring(env,	"db",	"test",	0);
sp_open(env);
void	*db	=	sp_getobject(env,	"db.test");
sp_destroy(env);

Database	schema
By	default	database	index	type	is	string.	Following	index	key	types	are	supported:	string,	u32,	u64,	u32_rev,	u64_rev.

void	*env	=	sp_env();
sp_setstring(env,	"db.test.index.key",	"u32",	0);

Sophia	supports	multi-part	keys:

void	*env	=	sp_env();
sp_setstring(env,	"db.test.index.key",	"u32",	0);
sp_setstring(env,	"db.test.index",	"key_b",	0);
sp_setstring(env,	"db.test.index.key_b",	"string",	0);
...
void	*o	=	sp_object(db);
sp_setstring(o,	"key",	&key_a,	0);
sp_setstring(o,	"key_b",	"hello",	0);
sp_set(db,	o);

Online	database	creation
Create	or	open	database	after	environment	start:

void	*env	=	sp_env();
sp_setstring(env,	"sophia.path",	"./storage",	0);
sp_open(env);
sp_setstring(env,	"db",	"test",	0);
void	*db	=	sp_getobject(env,	"db.test");
sp_open(db);
sp_destroy(db);	/*	close	database	*/
sp_destroy(env);

Online	database	close	and	drop
To	close	a	database	the	sp_destroy()	method	should	be	called	on	a	database	object.	Note	that	sp_destroy()	does	not
delete	any	data.

Sophia	2.1	Manual

20Managing	Databases

To	schedule	a	database	drop	the	sp_drop()	method	should	be	called	on	a	database	object.	Actuall	drop	procedure	will
be	automatically	scheduled	when	a	latest	transaction	completes.

Sophia	2.1	Manual

21Managing	Databases

Anti-Cache	Storage

Anti-Cache	mode	makes	RAM	a	primary	storage,	while	disk	becomes	a	secondary	storage.

Sophia	implements	the	mode	by	introducing	so-called	index	Temperature.	The	Temperature	shows	which	nodes	are	the
most	frequently	accessed	for	read	(hot).	These	nodes	are	periodically	elected	and	promoted	to	be	put	in-memory.
Previously	elected	nodes	are	unloaded	if	they	do	not	fit	into	memory	limit.

Following	variable	can	be	set	to	enable	anti-cache	mode	and	set	the	memory	limit:	db.database_name.storage	and
memory.anticache.

/*	set	1Gb	anti-cache	limit	(for	all	databases)	*/
sp_setint(env,	"memory.anticache",	1	*	1024	*	1024	*	1024);
/*	switch	a	test	database	into	anti-cache	mode	*/
sp_setstring(env,	"db.test.storage",	"anti-cache",	0);

The	election	period	is	configurable	by	the	following	variable:	compaction.zone.anticache_period.

/*	schedule	anti-cache	node	election	every	5	minutes	*/
sp_setint(env,	"compaction.0.anticache_period",	60	*	5);

Database	db.database_name.temperature_histogram	can	be	examined	to	see	current	temperature	distribution
among	index.

char	*temperature	=	sp_getstring(env,	"db.test.temperature_histogram",	NULL);
...
free(temperature);

Please	take	a	look	at	Database	and	Compaction	configuration	sections	for	additional	details.

For	pure	in-memory	storage	mode	see	Persistent	RAM	Storage	and	Memory-Mapped	Storage	for	semi-in-memory
storage	mode.

Sophia	2.1	Manual

22Anti-Caching

Persistent	Caching

Sophia	allows	to	use	a	database	as	a	cache	for	another	one	or	more	databases.	Caching	database	is	used	to	store
records	which	are	read	from	main	database.	Caching	database	can	be	placed	in	RAM	or	Flash,	while	main	database
can	be	stored	on	HDD.	Caching	database	has	the	same	storage	format	as	a	main	database,	it	is	also	involved	in
Compaction.	It	must	has	an	exact	index	keys	types	as	the	main	database.

Following	variable	can	be	set	to	put	a	database	into	a	cache	mode:	db.database_name.cache_mode.	To	assign	a
caching	database	for	main	database	db.database_name.cache	should	be	set	with	caching	database	name.

By	enabling	LRU	Mode	user	can	create	Persistent	LRU	Cache,	otherwise	caching	database	will	be	a	copy	of	the	main
database.

It	is	highly	advisable	to	enable	AMQ	Filter	for	caching	database.	The	filter	will	be	used	to	reduce	cache	usage	during
search	and	reduce	cache	washout	factor	during	invalidation	(set,	delete).

/*	put	cache	db	into	cache	mode	*/
sp_setint(env,	"db.cache.cache_mode",	1);
/*	set	size	of	cache	as	1	Gb	*/
sp_setint(env,	"db.cache.lru",	1	*	1024	*	1024	*	1024);
/*	enable	AMQ	Filter	*/
sp_setint(env,	"db.cache.amqf",	1);

/*	assign	cache	db	as	a	cache	for	the	main	db	*/
sp_setstring(env,	"db.main.cache",	"cache",	0);

After	that,	all	transactions	with	main	database	transparently	start	to	go	through	caching	database.	Following	logic	is
used:

sp_get(main)
1.	 attempt	to	find	a	key	in	caching	database
2.	 if	the	key	is	found

sp_set(cache,	key)	to	maintain	LRU	logic
return	key	to	user

3.	 attempt	to	find	a	key	in	main	database	(if	not	2)
4.	 if	the	key	is	found

sp_set(cache,	key)
return	key	to	user

5.	 not	found
sp_set(main)
1.	 insert	or	replace	key	in	main	database
2.	 replace	(or	do	nothing	if	not	found)	key	in	caching	database

Sophia	2.1	Manual

23Persistent	Caching

sp_delete(main)
1.	 delete	key	in	main	database
2.	 delete	key	in	caching	database

To	update	caching	database	uses	sp_get().	multi-statement	transactions	must	be	used.

Single	statement	operation	will	only	make	an	attempt	to	find	a	record,	but	not	to	save	it	back	into	caching	database.

/*	multi-statement	*/
void	*transaction	=	sp_begin(env);
void	*doc	=	sp_document(main);
sp_setstring(doc,	"key",	key,	sizeof(key));
void	*record	=	sp_get(transaction,	doc);
if	(record)
				sp_destroy(record);
/*	commit	will	maintain	Cache	and	LRU	logic	by
	*	inserting	record	into	caching	database	with	higher
	*	LSN	number.	*/
sp_commit(transaction);

/*	single-statement	*/
void	*doc	=	sp_document(main);
sp_setstring(doc,	"key",	key,	sizeof(key));
/*	record	will	not	be	saved	in	caching	database	*/
void	*record	=	sp_get(main,	doc);
if	(record)
				sp_destroy(record);

Upsert	operation	sp_upsert()	is	not	supported	for	the	scheme.	Cursor	operation	sp_cursor()	does	not	use	caching
database	and	can	separately	be	used	with	caching	or	main	database.

Please	note:	since	sp_get()	statements	are	not	involved	in	Write-Ahead	Log,	some	of	a	latest	updates	may	be	lost	in
cache	database	after	recovery.	These	are	records	which	yet	remain	in-memory	and	yet	being	dumped	to	disk	by
compaction.

Sophia	2.1	Manual

24Persistent	Caching

Persistent	RAM	Storage

Sophia	can	store	an	exact	copy	of	any	node	file	into	RAM.

All	read	requests	are	handled	using	RAM	storage.	The	storage	data	continuously	writing	on	disk	using	default
background	compaction	procedure	and	Write	Ahead	Log.

To	enable	RAM	storage	a	database	storage	mode	should	be	set	as	in-memory.

sp_setstring(env,	"db.test.storage",	"in-memory",	0);

It	is	a	good	idea	to	switch	Sophia	into	branch-less	compaction	mode.	This	mode	allows	to	have	an	exact	two-level
model	without	necessity	to	create	additional	branches	(index	dumps),	since	all	data	is	already	stored	in	RAM.

sp_setint(env,	"compaction.0.mode",	1);

During	recovery,	storage	data	files	are	read	back	into	memory.

It	is	possible	to	enable	and	combine	compression	with	RAM	Storage.

Memory-Mapped	Mode
As	an	alternate	way	to	use	Persistent	RAM	storage	and	Anti-Cache	modes	could	be	mmap	mode.	By	default	Sophia
uses	pread(2)	to	read	data	from	disk.	Using	mmap	mode,	Sophia	handles	all	requests	by	directly	accessing	memory-
mapped	node	files	memory.

Following	variable	can	be	set	to	enable	or	disable	mmap	mode:	db.database_name.mmap

sp_setint(env,	"db.test.mmap",	1);

It	is	a	good	idea	to	try	this	mode,	even	if	your	dataset	is	rather	small	or	you	need	to	handle	a	large	ratio	of	read	request
with	an	predictable	pattern.

Disadvantage	of	mmap	mode,	in	comparison	to	RAM	Storage,	is	a	possible	unpredictable	latency	behaviour	and	a	OS
cache	warmup	period	after	recovery.

Sophia	2.1	Manual

25Persistent	RAM	Storage

LRU	Mode
LRU	stands	for	'Least	Recently	Used'	eviction	algorithm.

When	LRU	mode	is	enabled,	Sophia	tries	to	maintain	a	database	size	limit	by	evicting	oldest	records.	LSN	number	is
used	for	eviction,	which	happens	during	compaction.

Following	variable	can	be	set	to	enable	and	set	database	size	limit:	db.database_name.lru

/*	limit	database	size	by	1Gb	*/
sp_setint(env,	"db.test.lru",	1	*	1024	*	1024	*	1024);

LRU	mode	should	be	used	in	conjunction	with	Persistent	Caching	mode.

Sophia	2.1	Manual

26LRU	Mode

https://en.wikipedia.org/wiki/Cache_algorithms

AMQ	Filter
AMQF	stands	for	'Approximate	Member	Query	Filter'.	The	filter	can	be	turned	on	to	reduce	a	number	of	possible	disk
accesses	during	point-looks	using	sp_get()	or	sp_delete().	The	filter	is	not	used	for	range	queries	by	sp_cursor(),
cursor	implementation	has	its	own	caching	scheme.

Following	variable	can	be	set	to	enable	or	disable	AMQF	usage:	db.database_name.amqf

sp_setint(env,	"db.test.amqf",	1);

By	default	the	filter	is	turned	off,	because	normally	there	is	no	need	for	it.	But	there	are	some	cases,	when	it	can	be
useful.

The	filter	should	be	used	to	reduce	LRU	washout	in	Persistent	Caching.

Sophia	uses	the	Quotient	Filter	for	the	AMQF	purpose.

Sophia	2.1	Manual

27AMQ	Filter

https://en.wikipedia.org/wiki/Quotient_filter

Compression
Following	options	can	be	set	to	enable	or	disable	compression	usage:	db.database_name.compression	and
db.database_name.compression_branch.

It	is	possible	to	choose	different	compression	types	for	Cold	and	Hot	data	(in	terms	of	updates).

Most	of	data	are	stored	in	Cold	branches	(compression).	While	Hot	data	stored	in	a	recently	created	branches
(compression_branch).

sp_setstring(env,	"db.test.compression",	"lz4",	0);
sp_setstring(env,	"db.test.compression_branch",	"lz4",	0);

Supported	compression	values:	lz4,	zstd,	none	(default).

RAM	Compression
It	is	possible	to	enable	and	combine	compression	and	RAM	Storage	Mode.

Prefix	Compression
Prefix	compression	is	implemented	by	compressing	mulit-part	keys	duplicates	during	compaction	process.

To	enable	key	compression:

sp_setint(env,	"db.test.compression_key",	1);

Sophia	2.1	Manual

28Compession

Point-in-Time	Views
To	create	a	View,	new	view	name	should	be	assigned	to	view	configuration	namespace.

It	is	possible	to	do	sp_get()	or	sp_cursor()	on	a	view	object.

sp_setstring(env,	"view",	"today",	0);
void	*view	=	sp_getobject(env,	"view.today");

Views	are	not	persistent,	therefore	view	object	must	be	recreated	after	shutdown	before	opening	environment	with	latest
view	LSN	number:	view.name.lsn.

sp_setstring(env,	"view",	"today",	0);
sp_setint(env,	"view.today.lsn",	12345);

To	delete	a	view,	sp_drop()	or	sp_destroy()	should	be	called	on	a	view	object.

Sophia	2.1	Manual

29Point-in-Time	Views

Snapshot
During	recovery,	Sophia	tries	to	read	disk	indexes.	To	reduce	recovery	time	for	big	databases,	Sophia	periodically	writes
index	dump	to	the	disk	generating	a	single	snapshot	file.	This	operation	is	called	Snapshot.

Only	indexes	are	saved	during	the	operation,	but	database	records	remain	untouched.

Snapshot	period	interval	can	be	set	or	disabled	using	compaction.zone.snapshot_period	variable.

/*	take	snapshot	every	10	minutes	*/
sp_setint(env,	"compaction.0.snapshot_period",	360);

Another	important	purpose	of	Snapshot	is	saving	necessary	statistic	to	distinct	Hot	and	Cold	node	files	used	by	Anti-
Cache	storage	mode.

Sophia	2.1	Manual

30Snapshot

Backup	and	Restore
Sophia	supports	asynchronous	Hot/Online	Backups.

Each	backup	iteration	creates	exact	copy	of	environment,	then	assigns	backup	sequential	number.	Sophia	v2.1	does	not
support	incremental	backup.

backup.path	must	be	set	with	a	specified	folder	which	will	contain	resulting	backup	folders.	To	start	a	backup,	user	must
initiate	backup.run	procedure	first.	Procedure	call	is	fast	and	does	not	block.

sp_setint(env,	"backup.run",	0);

backup.active	and	backup.last_complete	variables	can	be	examined	to	see	if	backup	process	is	in	progress	or	being
succesfully	completed.

Additionally,	scheduler.event_on_backup	can	be	enabled	which	will	result	in	asynchronous	notifications	using
scheduler.on_event	function	and	sp_poll().	This	might	be	helpful	for	a	event	loop	integration.

Backups	being	made	as	a	part	of	a	common	database	workflow.	It	is	possible	to	change	backup	priorities	using
compaction	redzone	settings.

To	restore	from	a	backup,	a	suitable	backup	version	should	be	picked,	copied	and	used	as	sophia.path	directory.

Sophia	2.1	Manual

31Backup	and	Restore

Compaction
Sophia	Scheduler	is	responsible	for	planning	all	background	tasks	depending	on	current	system	load	and	selected
profile	(redzone).

The	schedule	handles	following	tasks:	garbage	collection,	branch	compaction,	node	compaction,	log	ration,	lru,	anti-
cache	election,	async	reads,	and	so	on.

Sophia	has	multi-thread	scallable	compaction.	Number	of	active	background	workers	(threads)	can	be	set	using
scheduler.threads	variable.

sp_setint(env,	"scheduler.threads",	5);

Please	take	a	look	at	the	Compaction	and	Scheduler	configuration	sections	for	more	details.

Compaction	Configuration
Sophia	compaction	process	is	configurable	via	redzone.	Redzone	is	a	special	value	which	represents	current	memory
usage.	Each	redzone	defines	the	background	operations'	priority,	etc.

If	no	memory	limit	is	set,	redzone	zero	is	used	(default).

To	create	a	new	redzone,	write	a	percent	value	into	compaction	namespace.

By	default	only	compaction.0	and	compaction.80	redzones	are	defined.	When	80	percent	of	the	memory	usage	is
reached,	checkpoint	process	starts	automatically.

Checkpoint
It	is	possible	to	start	incremental	asynchronous	checkpointing	process,	which	will	force	branch	creation	and	memory
freeing	for	every	node	in-memory	index.	Once	a	memory	index	log	is	free,	files	also	will	be	automatically	garbage-
collected.

sp_setint(env,	"scheduler.checkpoint",	0);

Procedure	call	is	fast	and	does	not	block.	scheduler.checkpoint_active	and	scheduler.checkpoint_lsn_last	variables
can	be	examined	to	see	if	checkpoint	process	is	completed.

Checkpoints	are	automatically	used	to	ensure	a	memory	limit.

Sophia	2.1	Manual

32Compaction

Monitoring
Database	monitoring	is	possible	by	getting	current	dynamic	statistics	and	configuration	via	sp_env()	object.

Performance	metrics	are	described	in	the	Performance	configuration	section.

To	get	current	memory	usage	or	trace	every	worker	thread	see	Memory,	Performance	and	Scheduler	sections.

To	get	per-database	metrics	see	Database	sections.

Sophia	2.1	Manual

33Monitoring

DBMS	Integration
Sophia	support	special	work	modes	which	can	be	used	to	support	external	Write-Ahead	Log:	log.enable	and
sophia.recover.

Two-Phase	Recover
In	this	mode	Sophia	processes	transactions	to	ensure	that	they	were	not	already	commited.

After	second	sp_open()	Sophia	starts	environment.

1.	 env	=	sp_env()
2.	 sophia.recover	=	2
3.	 log.enable	=	0
4.	 sp_open(env)	start	in	recovery	mode,	compaction	not	started

i.	 start	defining	and	recovering	databases
ii.	 start	replaying	transactions	from	external	WAL
iii.	 sp_setint(transaction,	"lsn",	lsn)	forge	transaction	lsn	before	commit
iv.	 sp_commit(transaction)	every	commit	ensures	that	data	were	not	previously	written	to	disk

5.	 sp_open(env)	second	time	starts	in	default	mode

This	mode	can	be	helpful	for	Sophia	integration	into	other	database	management	system,	which	supports	its	own	Write-
Ahead	Log.

N-Phase	Recover
This	recovery	mode	allows	to	switch	Sophia	into	recovery	mode	and	back	on	the	fly.

1.	 env	=	sp_env()
2.	 sophia.recover	=	3
3.	 log.enable	=	0
4.	 sp_open(env)	start	in	default	mode	with	thread-pool	run.
5.	 usual	transaction	processing
6.	 sp_open(env)	switch	to	recovery	mode
7.	 start	replaying	transactions	from	external	source
8.	 sp_setint(transaction,	"lsn",	lsn)	forge	transaction	lsn	before	commit
9.	 sp_commit(transaction)	every	commit	ensures	that	data	were	not	previously	written	to	disk
10.	 sp_open(env)	again	switch	Sophia	back	to	default	mode.

Steps	from	4-9	can	be	repeated	any	time.

This	mode	can	be	helpful	for	Sophia	integration	with	most	of	a	Replication/JOIN	technologies.

Sophia	2.1	Manual

34DBMS	Integration

Transactions
Sophia	supports	fast	optimistic	single-statement	and	multi-statement	transactions.	Transactions	are	completely
isolated	from	each	other	under	Serializable	Snapshot	isolation	(SSI).

Single-statement	transactions
Single-statement	transactions	are	automatically	processed	when	sp_set(),	sp_delete(),	sp_upsert(),	sp_get()	are	used
on	a	database	object.

As	a	part	of	a	transactional	statement	a	key-value	document	must	be	prepared	using	sp_document()	method.

First	argument	of	sp_document()	method	must	be	an	database	object.

Object	must	be	prepared	by	setting	key	and	value	fields,	where	value	is	optional.	It	is	important	that	while	setting	key
and	value	fields,	only	pointers	are	copied.	Real	data	copies	only	during	first	operation.

Prepared	document	is	automatically	freed	on	commit.

void	*db	=	sp_getobject(env,	"db.test");
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	"hello",	0);
sp_setstring(o,	"value",	"world",	0));
sp_set(db,	o);	/*	transaction	*/
o	=	sp_document(db);
sp_set(o,	"key",	"hello",	0);
sp_delete(db,	o);

sp_get(database)	method	returns	an	document	that	is	semantically	equal	to	sp_document(database),	but	is	read-only.

Example:

void	*o	=	sp_document(db);
sp_set(o,	"key",	"hello",	0);
void	*result	=	sp_get(db,	o);
if	(result)	{
				int	valuesize;
				char	*value	=	sp_getstring(result,	"value",	&valuesize);
				printf("%s\n",	value);
				sp_destroy(result);
}

Multi-statement	transactions
Multi-statement	transaction	is	automatically	processed	when	sp_set(),	sp_delete(),	sp_upsert(),	sp_get()	are	used	on	a
transactional	object.

The	sp_begin()	function	is	used	to	start	a	multi-statement	transaction.

During	transaction,	no	updates	are	written	to	the	database	files	until	a	sp_commit()	is	called.	On	commit,	all
modifications	that	were	made	are	written	to	the	log	file	in	a	single	batch.

To	discard	any	changes	made	during	transaction	operation,	sp_destroy()	function	should	be	used.	No	nested
transactions	are	supported.

There	are	no	limit	on	a	number	of	concurrent	transactions.	Any	number	of	databases	can	be	involved	in	a	multi-
statement	transaction.

Sophia	2.1	Manual

35Transactions

void	*a	=	sp_getobject(env,	"db.database_a");
void	*b	=	sp_getobject(env,	"db.database_b");

char	key[]	=	"hello";
char	value[]	=	"world";

/*	begin	a	transaction	*/
void	*transaction	=	sp_begin(env);

void	*o	=	sp_document(a);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	value,	sizeof(value));
sp_set(transaction,	o);

o	=	sp_document(b);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	value,	sizeof(value));
sp_set(transaction,	o);

/*	complete	*/
sp_commit(transaction);

A	transactional	status	should	be	checked	(both	for	single	and	multi-statement):

int	status	=	sp_commit(transaction);
switch	(status)	{
case	-1:	/*	error	*/
case		0:	/*	ok	*/
case		1:	/*	rollback	*/
case		2:	/*	lock	*/
}

Rollback	status	means	that	transaction	has	been	rollbacked	by	another	concurrent	transaction.	Lock	status	means	that
transaction	is	not	finished	and	waiting	for	concurrent	transaction	to	complete.	In	that	case	commit	should	be	retried	later
or	transaction	can	be	rollbacked.	Any	error	happened	during	multi-statement	transaction	does	not	rollback	a	transaction.

Sophia	2.1	Manual

36Transactions

Deadlocks
Due	to	a	nature	of	multi-statement	transactions	deadlocks	are	possible.	Deadlocks	are	not	automatically	handled.
Transaction	object	procedure	deadlock	can	be	used	to	check	if	the	transaction	is	in	deadlock.

When	a	deadlock	happens,	transactions	stays	in	Lock	state.

Example:

void	*db	=	sp_getobject(env,	"db.database");

void	*a	=	sp_begin(env);
void	*b	=	sp_begin(env);

uint32_t	key	=	7;
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	&key,	sizeof(key));
sp_set(a,	o);
key	=	8;
o	=	sp_document(db);
sp_setstring(o,	"key",	&key,	sizeof(key));
sp_set(b,	o);
o	=	sp_document(db);
sp_setstring(o,	"key",	&key,	sizeof(key));
sp_set(a,	o);
key	=	7;
o	=	sp_document(db);
sp_setstring(o,	"key",	&key,	sizeof(key));
sp_set(b,	o);

sp_commit(a)	==	2;	/*	lock	*/
sp_commit(b)	==	2;	/*	lock	*/

sp_getint(a,	"deadlock")	==	1;
sp_getint(b,	"deadlock")	==	1;

sp_destroy(a);
sp_getint(b,	"deadlock")	==	0;

sp_commit(b)	==	0;	/*	ok	*/

Sophia	2.1	Manual

37Deadlocks

Asynchronous	reads
Asynchronous	operations	are	automatically	scheduled	when	using	sp_async(database)	object	instead	of	database	one.
On	complete:	scheduler.on_event	callback	function	is	envoked.

Sophia	2.1	Manual

38Asynchronous	Reads

Upsert

Upsert	is	Update	or	Insert	operation.

Sophia	Upsert	implementation	allows	to	reduce	Read-Modify-Write	case	to	a	single	Write.	Updates	are	applied	by	user-
supplied	callback	db.database_name.index.upsert	during	data	compaction	or	upon	read	request	by	sp_get()	or
sp_cursor().

To	enable	upsert	command,	a	db.database_name.index.upsert	and	optionally	db.database_name.index.upsert_arg
must	be	set	to	callback	function	pointer.

Please	take	a	look	at	sp_upsert()	API	for	description	and	an	example.

Sophia	2.1	Manual

39Upsert

Cursors
It	is	possible	to	do	range	queries	using	cursors.

To	create	a	cursor	the	sp_cursor(),	function	should	be	used.	Each	call	to	sp_get()	on	cursor	object	makes	an	iteration
step	according	to	current	iteration	order.	Second	and	futher	sp_get()	calls	must	using	previously	get	object	to	continue
iteration.

To	set	iteration	order,	cursor	key	object	must	be	prepared	by	setting	order	field.	To	do	prefix	scan	prefix	field	must	be	set
using	the	same	argument	convention	as	for	key.	Supported	orders:	>,	>=,	<,	<=	both	including	or	excluding	search	key.	By
default	key	order	is	set	to	>=.

If	search	key	is	not	set,	then	maximum	or	minimum	key	is	returned.

Example	(traverse	a	database	in	increasing	order):

void	*cursor	=	sp_cursor(env);
void	*o	=	sp_document(db);
sp_setstring(o,	"order",	">=",	0);
while	((o	=	sp_get(c,	o)))	{
				char	*key	=	sp_getstring(o,	"key",	NULL);
				char	*value	=	sp_getstring(o,	"value",	NULL);
				printf("%s	=	%s\n",	key,	value);
}
sp_destroy(cursor);

Cursors	are	consistent.	It	is	possible	to	do	iteration	and	deletions	or	updates	at	the	same	time	without	any	interference
with	query	data	or	other	transactions.

Cursor	should	be	freed	using	the	sp_destroy()	function	after	usage.

Sophia	2.1	Manual

40Cursors

Sophia	Environment

name type description

sophia.version string,	ro Get	current	Sophia	version.

sophia.version_storage string,	ro Get	current	Sophia	storage	version.

sophia.build string,	ro Get	git	commit	id	of	a	current	build.

sophia.error string,	ro Get	last	error	description.

sophia.path string Set	current	Sophia	environment	directory.

sophia.path_create int Fail	if	sophia.path	directory	is	not	exists.

sophia.recover int Recovery	mode	1.	on-phase	(default)	2.	-	two-phase,	3.	-	three-phase.

Sophia	2.1	Manual

41Sophia

Memory	Control
Current	memory	limit	is	in	bytes.	This	limit	applies	only	to	memory	used	for	storing	in-memory	keys.	This	does	not	limit
any	memory	used	for	node	bufferization	at	the	moment.

Memory	pager	is	a	part	of	Sophia	that	is	used	for	memory	allocation	as	a	part	of	internal	slab-allocator.	Used	for	object
allocations.

Please	consider	to	read	Architecture	section	about	memory	limits.

name type description

memory.limit int Set	current	memory	limit	in	bytes.

memory.used int,	ro Get	current	memory	usage	in	bytes.

memory.anticache int Set	current	memory	limit	for	Anti-Cache	mode.

memory.pager_pool_size int,	ro Get	current	memory	pager	pool	size.

memory.pager_page_size int,	ro Get	pager	page	size.

memory.pager_pools int,	ro Get	a	number	of	allocated	pager	memory	pools.

Sophia	2.1	Manual

42Memory

Scheduler

name type description

scheduler.threads int Set	a	number	of	worker	threads.

scheduler.id.trace string,
ro Get	a	worker	trace.

scheduler.zone int,	ro Currently	active	compaction	redzone.

scheduler.checkpoint_active int,ro Shows	if	checkpoint	operation	is	in	progress.

scheduler.checkpoint_lsn int,	ro LSN	of	currently	active	checkpoint	operation.

scheduler.checkpoint_lsn_last int,	ro LSN	of	the	last	completed	checkpoint	operation.

scheduler.checkpoint function Force	to	start	background	checkpoint.	Does	not	block.

scheduler.anticache_active int,ro Shows	if	anti-cache	operation	is	in	progress.

scheduler.anticache_asn int,	ro ASN	of	currently	active	anti-cache	operation.

scheduler.anticache_asn_last int,	ro ASN	of	the	last	completed	Anti-Cache	operation.

scheduler.anticache function Force	to	start	background	anti-cache.	Does	not	block.

scheduler.snapshot_active int,ro Shows	if	snapshot	operation	is	in	progress.

scheduler.snapshot_ssn int,	ro SSN	of	currently	active	snapshot	operation.

scheduler.snapshot_ssn_last int,	ro SSN	of	the	last	completed	snapshot	operation.

scheduler.snapshot function Force	to	start	background	snapshot	operation.	Does	not	block.

scheduler.on_recover pointer Set	recover	log	function.

scheduler.on_recover_arg pointer on_recover	function	arg.

scheduler.on_event pointer Set	a	callback	which	will	be	called	on	an	async	operation
completion.

scheduler.on_event_arg pointer on_event	function	argument.

scheduler.event_on_backup int Generate	async	event	on	a	backup	completion.

scheduler.gc_active function Shows	if	gc	operation	is	in	progress.

scheduler.gc function Force	to	start	background	gc.	Does	not	block.

scheduler.lru_active function Shows	if	lru	operation	is	in	progress.

scheduler.lru function Force	to	start	background	lru	operation.	Does	not	block.

scheduler.run function Run	scheduler	step	in	a	current	thread.	For	testing	purposes.

Sophia	2.1	Manual

43Scheduler

Compaction

name type description

compaction.redzone int To	create	a	new	redzone,	write	a	percent	value	into
compaction	namespace.

compaction.redzone.mode int
Set	compaction	mode.	Mode	1:	branch-less	mode	(strict	2-
level	storage),	2:	checkpoint,	3:	branch	+	compaction
(default).

compaction.redzone.compact_wm int Compaction	operation	starts	when	a	number	of	node
branches	reaches	this	watermark.	Cant	be	less	than	two.

compaction.redzone.compact_mode int Set	read-intensive	or	write-intensive	compaction	strategy
mode.	0	-	by	number	of	branches,	1	-	by	temperature.

compaction.redzone.branch_prio int Priority	of	branch	operation.	Priority	is	measured	by	a
maximum	number	of	executing	workers.

compaction.redzone.branch_wm int Branch	operation	starts	when	a	size	of	in-memory	key	index
reaches	this	watermark	value.	Measured	in	bytes.

compaction.redzone.branch_age int
Branch	operation	automatically	starts	when	it	detects	that	a
node	in-memory	key	index	has	not	been	updated	in	a
branch_age	number	of	seconds.

compaction.redzone.branch_age_period int Scheduler	starts	scanning	for	aged	node	in-memory	index
every	branch_age_period	seconds.

compaction.redzone.branch_age_wm int
This	watermark	value	defines	lower	bound	of	in-memory
index	key	size	which	is	being	checked	during	branch_age
operation.	Measured	in	bytes.

compaction.redzone.anticache_period int Check	for	anti-cache	node	election	every	anticache_period
seconds.

compaction.redzone.backup_prio int Priority	of	backup	operation.	Priority	is	measured	by	a
maximum	number	of	executing	workers.

compaction.redzone.gc_wm int
Garbage	collection	starts	when	watermark	value	reaches	a
certain	percent	of	duplicates.	When	this	value	reaches	a
compaction,	operation	is	scheduled.

compaction.redzone.gc_db_prio int Priority	of	a	database	async	close/drop	operation.

compaction.redzone.gc_prio int Priority	of	gc	operation.	Priority	is	measured	by	a	maximum
number	of	executing	workers.

compaction.redzone.gc_period int Check	for	a	gc	every	gc_period	seconds.

compaction.redzone.lru_prio int Priority	of	LRU	operation.	Priority	is	measured	by	a
maximum	number	of	executing	workers.

compaction.redzone.lru_period int Run	LRU	scheduler	every	lru_period	seconds.

compaction.redzone.async int Asynchronous	thread	work	mode:	1	-	reserve	thread,	2	-	do
not	reserve	thread.

Sophia	2.1	Manual

44Compaction

Performance

name type description

performance.documents int,	ro Number	of	currently	allocated	document.

performance.documents_used int,	ro RAM	used	by	allocated	document.

performance.key string,	ro Average	key	size.

performance.value string,	ro Average	value	size.

performance.set int,	ro Total	number	of	Set	operations.

performance.set_latency string,	ro Average	Set	latency.

performance.delete int,	ro Total	number	of	Delete	operations.

performance.delete_latency string,	ro Average	Delete	latency.

performance.upsert int,	ro Total	number	of	Upsert	operations.

performance.upsert_latency string,	ro Average	Upsert	latency.

performance.get int,	ro Total	number	of	Get	operations.

performance.get_latency string,	ro Average	Get	latency.

performance.get_read_disk string,	ro Average	disk	reads	by	Get	operation.

performance.get_read_cache string,	ro Average	cache	reads	by	Get	operation.

performance.tx_active_rw int,	ro Number	of	active	RW	transactions.

performance.tx_active_ro int,	ro Number	of	active	RO	transactions.

performance.tx int,	ro Total	number	of	completed	transactions.

performance.tx_rollback int,	ro Total	number	of	transaction	rollbacks.

performance.tx_conflict int,	ro Total	number	of	transaction	conflicts.

performance.tx_lock int,	ro Total	number	of	transaction	locks.

performance.tx_latency string,	ro Average	transaction	latency	from	begin	till	commit.

performance.tx_ops string,	ro Average	number	of	statements	per	transaction.

performance.tx_gc_queue int,	ro Transaction	manager	GC	queue	size.

performance.cursor int,	ro Total	number	of	Cursor	operations.

performance.cursor_latency string,	ro Average	Cursor	latency.

performance.cursor_read_disk string,	ro Average	disk	reads	by	Cursor	operation.

performance.cursor_read_cache string,	ro Average	cache	reads	by	Cursor	operation.

performance.cursor_ops string,	ro Average	number	of	keys	read	by	Cursor	operation.

performance.req_queue int,	ro Number	of	waiting	request	in	async	queue.

performance.req_ready int,	ro Number	of	ready	request	in	async	queue.

performance.req_active int,	ro Number	of	active	request	in	async	queue.

performance.reqs int,	ro Current	number	of	request	in	async	queue.

Sophia	2.1	Manual

45Performance

Sophia	2.1	Manual

46Performance

Storage	Engine	Metrics

name type description

metric.lsn int Current	log	sequential	number.

metric.tsn int Current	transaction	sequential	number.

metric.nsn int Current	node	sequential	number.

metric.ssn int Current	snapshot	sequential	number.

metric.asn int Current	anticache	sequential	number.

metric.dsn int Current	database	sequential	number.

metric.bsn int Current	backup	sequential	number.

metric.lfsn int Current	log	file	sequential	number.

Sophia	2.1	Manual

47Metric

View
To	create	a	view,	new	view	name	should	be	set	to	view	configuration	namespace.

name type description

view.name.lsn int Set	or	get	view	LSN	number.

Sophia	2.1	Manual

48View

Write	Ahead	Log

name type description

log.enable int Enable	or	disable	transaction	log.

log.path string Set	folder	for	transaction	log	directory.	If	variable	is	not	set,	it	will	be	automatically
set	as	sophia.path/log.

log.sync int Sync	transaction	log	on	every	commit.

log.rotate_wm int Create	new	log	file	after	rotate_wm	updates.

log.rotate_sync int Sync	log	file	on	every	rotation.

log.rotate function Force	to	rotate	log	file.

log.gc function Force	to	garbage-collect	log	file	pool.

log.files int,	ro Number	of	log	files	in	the	pool.

Sophia	2.1	Manual

49Write	Ahead	Log

Database
To	create	a	database,	new	database	name	should	be	set	to	db	control	namespace.	If	no	database	exists,	it	will	be
created	automatically.

Database	can	be	created,	opened	or	deleted	before	or	after	environment	startup.

Database	has	following	states:	offline,	online,	recover,	shutdown,	malfunction.	Database	sets	malfunction	status	if	any
unrecoverable	error	occurs.

name type description

db.name.name string,
ro Get	database	name

db.name.id int Database's	sequential	id	number.	This	number	is	used	in
the	transaction	log	for	the	database	identification.

db.name.status string,
ro Get	database	status.

db.name.storage string Set	storage	mode:	anti-cache,	cache,	in-memory.

db.name.format string Set	database	format:	kv,	document.

db.name.amqf int enable	or	disable	AMQ	Filter.

db.name.path string Set	folder	to	store	database	data.	If	variable	is	not	set,	it
will	be	automatically	set	as	sophia.path/database_name.

db.name.path_fail_on_exists int Produce	error	if	path	already	exists.

db.name.path_fail_on_drop int Produce	error	on	attempt	to	open	'dropped'	database
directory.

db.name.cache_mode int Mark	this	database	as	a	cache.

db.name.cache string Set	name	of	a	cache	database	to	use.

db.name.mmap int Enable	or	disable	mmap	mode.

db.name.sync int Sync	node	file	on	the	branch	creation	or	compaction
completion.

db.name.node_preload int Preload	whole	node	into	memory	for	compaction.

db.name.node_size int Set	a	node	file	size	in	bytes.	Node	file	can	grow	up	to	two
times	the	size	before	the	old	node	file	is	being	split.

db.name.page_size int Set	size	of	a	page	to	use.

db.name.page_checksum int Check	checksum	during	compaction.

db.name.compression_key int Enable	or	disable	prefix	(multi-part)	compression.

db.name.compression string Specify	compression	driver.	Supported:	lz4,	zstd,	none
(default).

db.name.compression_branch string Specify	compression	driver	for	branches.

db.name.lru int Enable	LRU	mode.

db.name.lru_step int Set	LRU	accuracy.

db.name.branch function Force	branch	creation.

db.name.compact function Force	compaction.

db.name.compact_index function Force	two-level	compaction.

Sophia	2.1	Manual

50Database

db.name.index.memory_used int,	ro Memory	used	by	database	for	in-memory	key	indexes	in
bytes.

db.name.index.size int,	ro Sum	of	nodes	size	in	bytes	(compressed).	This	is	equal
to	the	full	database	size.

db.name.index.size_uncompressed int,	ro Full	database	size	before	the	compression.

db.name.index.size_snapshot int,	ro Snapshot	file	size.

db.name.index.size_amqf int,	ro Total	size	used	by	AMQ	Filter.

db.name.index.count int,	ro Total	number	of	keys	stored	in	database.	This	includes
transactional	duplicates	and	not	yet-merged	duplicates.

db.name.index.count_dup int,	ro Total	number	of	transactional	duplicates.

db.name.index.read_disk int,	ro Number	of	disk	reads	since	start.

db.name.index.read_cache int,	ro Number	of	cache	reads	since	start.

db.name.index.temperature_avg int,	ro Average	index	temperature.

db.name.index.temperature_min int,	ro Min	index	node	temperature.

db.name.index.temperature_max int,	ro Max	index	node	temperature.

db.name.index.temperature_histogram string,
ro Index	temperature	distribution	histogram.

db.name.index.node_count int,	ro Number	of	active	nodes.

db.name.index.branch_count int,	ro Total	number	of	branches.

db.name.index.branch_avg int,	ro Average	number	of	branches	per	node.

db.name.index.branch_max int,	ro Maximum	number	of	branches	per	node.

db.name.index.branch_histogram string,
ro Branch	histogram	distribution	through	all	nodes.

db.name.index.page_count int,	ro Total	number	of	pages.

db.name.index.upsert function Set	upsert	callback	function.

db.name.index.upsert_arg function Set	upsert	function	argument.

db.name.index.key string Set	index	key	type	(string,	u32,	u64,	u32_rev,	u64_rev).
See	database	section	for	details.

Sophia	2.1	Manual

51Database

Backup

name type description

backup.path string Set	backup	path.	Each	new	backup	will	create	a	backup.path/id	folder
containing	complete	environment	copy.

backup.run function Start	background	backup.	Does	not	block.

backup.active int Shows	if	backup	operation	is	in	progress.

backup.last int Shows	id	of	the	last	completed	backup.

backup.last_complete int Shows	if	the	last	backup	was	successful.

Sophia	2.1	Manual

52Backup

Version	1.2
There	have	been	major	changes	in	storage	architecture	since	version	1.1.

Version	1.1	defines	strict	2-level	storage	model	between	in-memory	and	disk.	It	gives	worst-case	guarantee	O(1)	for	any
ordered	key	read	in	terms	of	disk	access.

This	approach	had	its	limitations,	since	it	was	unable	to	efficiently	maintain	memory	limit	with	required	performance.
Additionally	there	was	a	need	for	multi-threaded	compaction.

Sophia	has	evolved	in	a	way	that	expands	original	ideas.	Architecture	has	been	designed	to	efficiently	work	with	memory
and	large	amount	of	keys.

In	fact,	it	became	even	simplier.

Design
Sophia's	main	storage	unit	is	a	Node.

Each	Node	represents	a	single	file	with	associated	in-memory	region	index	and	two	in-memory	key	indexes.	Node	file
consists	of	Branches.

Each	Branch	consists	of	a	set	of	sorted	Regions	and	Region	Index.

A	single	Region	holds	keys	with	values.	It	has	the	same	semantical	meaning	as	a	B-Tree	page,	but	organized	in	a
different	way.	It	does	not	have	a	tree	structure	or	any	internal	page-to-page	relationships	and	thus	no	meta-data
overhead.

A	Region	Index	is	represented	by	an	ordered	range	of	regions	with	their	min	and	max	keys	and	on-disk	reference.
Regions	never	overlap.

A	Key	Index	is	very	similar	to	LSM	zero-level	(memtable),	but	has	a	different	key	lifecycle.	All	modifications	first	get	into	the
index	and	hold	up	until	they	are	explicitly	removed	by	the	merger.

Before	getting	added	to	the	in-memory	Key	Index,	modifications	are	first	written	to	the	Write-Ahead	Log.

Sophia	2.1	Manual

53v1.2

Lifecycle
Database	lifecycle	is	organized	in	terms	of	two	major	operations:	Branch	and	Compaction.

When	a	Node's	in-memory	Key	Index	size	reaches	a	special	watermark	value	or	global	memory	limit,	Branch	operation
is	scheduled.

When	some	Node	branch	counter	reaches	a	special	watermark	value,	Compaction	operation	is	scheduled.

Branch	operation

1.	 rotate	in-memory	Key	Index	(use	second	one	empty)	(Node	updates	during	Branch	goes	to	second	index)
2.	 create	new	Regions	and	Region	Index	from	Key	Index
3.	 create	new	Node	Branch
4.	 sequentially	write	Branch	to	the	end	of	Node	file
5.	 sync
6.	 free	index	and	rotate

Compaction	operation

1.	 sequentially	read	Node	file	into	memory
2.	 create	iterator	for	each	Branch
3.	 merge	and	split	key-stream:

i.	 create	one	or	more	Nodes
ii.	 delete	Node

4.	 sequentially	write	new	Node	or	Nodes
5.	 sync
6.	 redistribute	online	updates	between	new	Nodes
7.	 remove	old	Node
8.	 rename	new	Node	or	Nodes	when	completed

Optimization	Game
All	background	operations	are	planned	by	special	scheduler.

There	is	a	game	between	available	memory,	a	number	of	Branches	and	Search	times.

Each	additional	branch	says	that	there	is	a	possible	additional	disk	access	during	the	search.	During	the	search,	only
branch	regions	that	have	min	>=	key	<=	max	are	examined.	In	the	same	time,	it	is	unable	to	maintain	memory	limits
without	branching,	because	compaction	times	are	greater	than	possible	rate	of	incoming	data.

Sophia	is	designed	to	be	read	optimized.	There	is	a	high	possibility	that	latest	created	Branches	(hot	data)	are	stored	in
the	file	system	cache.	Scheduler	is	aware	about	nodes	which	have	largest	in-memory	Key	Index	and	biggest	number	of
Branches.	These	are	processed	first.

Additionally	all	operations	are	planned	taking	current	system	state	in	account,	like	memory	usage	statistics,	current	load
profiler	(redzone),	operations	priorities,	checkpoint,	backup,	etc.

Sophia	compaction	is	multi-threaded.	Each	worker	(thread)	requests	scheduler	for	a	new	task.	Basic	unit	of	a
background	task	is	an	operation	on	a	single	Node.

Sophia	is	designed	to	efficiently	utilize	available	memory.	If	there	is	more	memory	available,	then	branch/compaction
operations	become	more	infrequent	and	system	becomes	more	disk-efficient.	Best	performance	can	be	obtained	with
no	memory	limit	set.	Sophia	is	Hard-Drive	(and	Flash)	friendly,	since	all	operations	are	delayed	and	executed	in	large
sequential	reads	and	writes,	without	overwrite.

Garbage	Collection

Sophia	2.1	Manual

54v1.2

Garbage	collection	(MVCC	related)	is	executed	automatically	by	Compaction	task.

Also,	scheduler	periodically	checks	if	there	are	any	nodes	which	have	large	percentage	of	transactional	versions
(duplicates)	stored	per	node.

Algorithmic	Complexity
Sophia	has	following	algorithmic	complexity	(in	terms	of	disk	access):

set	worst	case	is	O(1)	write-ahead-log	append-only	key	write	+	in-memory	node	index	search	+	in-memory	index	insert

delete	worst	case	is	O(1)	(delete	operation	is	equal	to	set)

get	worst	case	is	amortized	O(max_branch_count_per_node)	random	region	read	from	a	single	node	file,	which	itself
does	in-memory	key	index	search	+	in-memory	region	search

range	worst	case	of	full	database	traversal	is	amortized	O(total_region_count)	+	in-memory	key-index	searches	for	each
node

Sophia	2.1	Manual

55v1.2

Version	1.1
Original	Sophia's	architecture	combines	a	region	in-memory	index	with	an	in-memory	key	index.

A	region	index	is	represented	by	an	ordered	range	of	regions	with	their	min	and	max	keys	and	latest	on-disk	reference.
Regions	never	overlap.

These	regions	have	the	same	semantical	meaning	as	the	B-Tree	pages,	but	designed	differently.	They	do	not	have	a
tree	structure	or	any	internal	page-to-page	relationships,	thus	no	meta-data	overhead	(specifically	to	append-only	B-
Tree).

A	single	region	on-disk	holds	keys	with	values.	As	a	B-tree	page,	region	has	its	maximum	key	count.	Regions	are
uniquely	identified	by	region	id	number	that	makes	them	trackable	in	future.

Key	index	is	very	similar	to	LSM	zero-level	(memtable),	but	has	a	different	key	lifecycle.	All	modifications	first	get	inserted
into	the	index	and	then	hold	up	until	they	are	explicitly	removed	by	merger.

Lifecycle
The	database	update	lifecycle	is	organized	in	terms	of	epochs.	Epoch	lifetime	is	set	in	terms	of	key	updates.	When	the
update	counter	reaches	an	epoch's	watermark	number	then	the	Rotation	event	happen.

Each	epoch,	depending	on	its	state,	is	associated	with	a	single	log	file	or	database	file.	Before	getting	added	to	the	in-
memory	index,	modifications	are	first	written	to	the	epoch's	write-ahead	log.

On	each	rotation	event:

1.	 current	epoch,	so	called	'live',	is	marked	as	'transfer'	which	leads	to	a	new	'live'	epoch	creation	(new	log	file)
2.	 create	new	in-memory	key	index	and	swap	it	with	current	one
3.	 merger	thread	is	being	woken	up

The	merger	thread	is	the	core	part	that	is	responsible	for	region	merging	and	garbage	collecting	of	the	old	regions	and
older	epochs.	On	the	wakeup,	the	merger	thread	iterates	through	list	of	epochs	marked	as	'transfer'	and	starts	the
merge	procedure.

Sophia	2.1	Manual

56v1.1

The	merge	procedure	has	the	following	steps:

1.	 create	new	database	file	for	the	latest	'transfer'	epoch
2.	 fetch	any	keys	from	in-memory	index	that	associated	with	a	single	destination	region
3.	 start	the	merge	for	each	fetched	key	and	origin	region,	then	write	a	new	region	to	the	database	file
4.	 on	each	completed	region	(current	merged	key	count	is	less	or	equal	to	max	region	key	count):

i.	 allocate	new	split	region	for	region	index,	set	min	and	max
ii.	 first	region	always	has	id	of	origin	destination	region
iii.	 link	region	and	schedule	for	future	commit

5.	 on	origin	region	update	completion:
i.	 update	destination	region	index	file	reference	to	the	current	epoch	and	insert	split	regions
ii.	 remove	keys	from	key	index

6.	 start	step	(2)	until	there	is	no	updates	left
7.	 start	garbage	collector
8.	 sync	database	with	a	disk	drive,	then,	if	everything	went	well,	remove	all	'transfer'	epochs	(log	files)	and	gc'ed

databases
9.	 free	index	memory

Garbage	Collection
The	garbage	collector	has	a	simple	design.

All	that	you	need	is	to	track	an	epoch's	total	region	count	and	the	count	of	transfered	regions	during	merge	procedure.
Thus,	if	some	older	epoch	database	has	fewer	than	70%	(or	any	other	changeable	factor)	live	regions,	they	just	get
copied	to	the	current	epoch	database	file	while	the	old	one	is	being	deleted.

On	database	recovery,	Sophia	tracks	and	builds	an	index	of	pages	from	the	earliest	epochs	(biggest	numbers)	down	to
the	oldest.	Log	files	then	are	being	replayed	and	epochs	become	marked	as	'transfer'.

Algorithmic	Complexity
Sophia	has	been	evaluated	as	having	the	following	complexity	(in	terms	of	disk	accesses):

set	worst	case	is	O(1)	append-only	key	write	+	in-memory	index	insert

delete	worst	case	is	O(1)	(delete	operation	is	equal	to	set)

get	worst	case	is	O(1)	random	region	read,	which	itself	does	amortized	O(log	region_key_count)	key	compares	+	in-
memory	key	index	search	+	in-memory	region	search

range	range	queries	are	very	fast	due	to	the	fact	that	each	iteration	needs	to	compare	no	more	than	two	keys	without	a
search,	and	access	through	mmaped	database.	Roughly	complexity	can	be	equally	evaluated	as	sequential	reading	of
the	mmaped	file.

Sophia	2.1	Manual

57v1.1

NAME

sp_env	-	create	a	new	environment	handle

SYNOPSIS

#include	<sophia.h>

void	*sp_env(void);

DESCRIPTION

The	sp_env()	function	allocates	new	Sophia	environment	object.

The	object	is	intended	for	usage	by	sp_open()	and	must	be	configured	first.	After	using,	an	object	should	be	freed	by
sp_destroy().

Please	take	a	look	at	Configuration,	and	Database	administration	sections.

Common	workflow	is	described	here.

EXAMPLE

void	*env	=	sp_env();
sp_setstring(env,	"sophia.path",	"./storage",	0);
sp_setstring(env,	"db",	"test",	0);
sp_open(env);
void	*db	=	sp_getobject(env,	"db.test");
/*	do	transactions	*/
sp_destroy(env);

RETURN	VALUE

On	success,	sp_env()	allocates	new	environment	object	pointer.	On	error,	it	returns	NULL.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

58sp_env

NAME

sp_document	-	create	a	document	object

SYNOPSIS

#include	<sophia.h>

void	*sp_document(void	*object);

DESCRIPTION

sp_document(database):	create	new	document	for	a	transaction	on	a	selected	database.

The	sp_document()	function	returns	an	object	which	is	intended	to	be	used	in	by	any	CRUD	operations.	Document
might	contain	a	key-value	pair	with	any	additional	metadata.

EXAMPLE

void	*o	=	sp_document(db);
sp_setstring(o,	"key",	"hello",	0);
sp_setstring(o,	"value",	"world",	0));
sp_set(db,	o);

RETURN	VALUE

On	success,	sp_document()	returns	an	object	pointer.	On	error,	it	returns	NULL.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

59sp_document

NAME

sp_setstring,	sp_getstring,	sp_setint,	sp_getint,	sp_getobject	-	set	or	get	configuration	options

SYNOPSIS

#include	<sophia.h>

int						sp_setstring(void	*object,	const	char	*path,	const	void	*ptr,	int	size);
void				*sp_getstring(void	*object,	const	char	*path,	int	*size);
int						sp_setint(void	*object,	const	char	*path,	int64_t	value);
int64_t		sp_getint(void	*object,	const	char	*path);
void				*sp_getobject(void	*object,	const	char	*path);

DESCRIPTION

For	additional	information	take	a	look	at	the	Configuration	section.

EXAMPLE

void	*env	=	sp_env()
sp_setstring(env,	"sophia.path",	"./sophia",	0);
sp_open(env);

char	key[]	=	"key";
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	"hello	world",	0));
sp_set(db,	o);

int	error_size;
char	*error	=	sp_getstring(env,	"sophia.error",	&error_size);
if	(error)	{
				printf("error:	%s\n",	error);
				free(error);
}

void	*db	=	sp_getobject(env,	"db.test");
sp_drop(db);

RETURN	VALUE

On	success,	sp_setstring()	returns	0.	On	error,	it	returns	-1.

On	success,	sp_getstring()	returns	string	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

All	pointers	returned	by	sp_getstring()	must	be	freed	using	free(3)	function.	Exception	is	sp_document()	object	and
configuration	cursor	document.

On	success,	sp_setint()	returns	0.	On	error,	it	returns	-1.	On	success,	sp_getint()	returns	a	numeric	value.	On	error,	it
returns	-1.

On	success,	sp_getobject()	returns	an	object	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

The	database	object	returned	by	sp_getobject()	increments	its	reference	counter,	sp_destroy()	can	be	used	to
decrement	it.	This	should	be	considered	for	online	database	close/drop	cases.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

60sp_setstring

Sophia	2.1	Manual

61sp_setstring

NAME

sp_setstring,	sp_getstring,	sp_setint,	sp_getint,	sp_getobject	-	set	or	get	configuration	options

SYNOPSIS

#include	<sophia.h>

int						sp_setstring(void	*object,	const	char	*path,	const	void	*ptr,	int	size);
void				*sp_getstring(void	*object,	const	char	*path,	int	*size);
int						sp_setint(void	*object,	const	char	*path,	int64_t	value);
int64_t		sp_getint(void	*object,	const	char	*path);
void				*sp_getobject(void	*object,	const	char	*path);

DESCRIPTION

For	additional	information	take	a	look	at	the	Configuration	section.

EXAMPLE

void	*env	=	sp_env()
sp_setstring(env,	"sophia.path",	"./sophia",	0);
sp_open(env);

char	key[]	=	"key";
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	"hello	world",	0));
sp_set(db,	o);

int	error_size;
char	*error	=	sp_getstring(env,	"sophia.error",	&error_size);
if	(error)	{
				printf("error:	%s\n",	error);
				free(error);
}

void	*db	=	sp_getobject(env,	"db.test");
sp_drop(db);

RETURN	VALUE

On	success,	sp_setstring()	returns	0.	On	error,	it	returns	-1.

On	success,	sp_getstring()	returns	string	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

All	pointers	returned	by	sp_getstring()	must	be	freed	using	free(3)	function.	Exception	is	sp_document()	object	and
configuration	cursor	document.

On	success,	sp_setint()	returns	0.	On	error,	it	returns	-1.	On	success,	sp_getint()	returns	a	numeric	value.	On	error,	it
returns	-1.

On	success,	sp_getobject()	returns	an	object	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

The	database	object	returned	by	sp_getobject()	increments	its	reference	counter,	sp_destroy()	can	be	used	to
decrement	it.	This	should	be	considered	for	online	database	close/drop	cases.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

62sp_setint

Sophia	2.1	Manual

63sp_setint

NAME

sp_setstring,	sp_getstring,	sp_setint,	sp_getint,	sp_getobject	-	set	or	get	configuration	options

SYNOPSIS

#include	<sophia.h>

int						sp_setstring(void	*object,	const	char	*path,	const	void	*ptr,	int	size);
void				*sp_getstring(void	*object,	const	char	*path,	int	*size);
int						sp_setint(void	*object,	const	char	*path,	int64_t	value);
int64_t		sp_getint(void	*object,	const	char	*path);
void				*sp_getobject(void	*object,	const	char	*path);

DESCRIPTION

For	additional	information	take	a	look	at	the	Configuration	section.

EXAMPLE

void	*env	=	sp_env()
sp_setstring(env,	"sophia.path",	"./sophia",	0);
sp_open(env);

char	key[]	=	"key";
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	"hello	world",	0));
sp_set(db,	o);

int	error_size;
char	*error	=	sp_getstring(env,	"sophia.error",	&error_size);
if	(error)	{
				printf("error:	%s\n",	error);
				free(error);
}

void	*db	=	sp_getobject(env,	"db.test");
sp_drop(db);

RETURN	VALUE

On	success,	sp_setstring()	returns	0.	On	error,	it	returns	-1.

On	success,	sp_getstring()	returns	string	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

All	pointers	returned	by	sp_getstring()	must	be	freed	using	free(3)	function.	Exception	is	sp_document()	object	and
configuration	cursor	document.

On	success,	sp_setint()	returns	0.	On	error,	it	returns	-1.	On	success,	sp_getint()	returns	a	numeric	value.	On	error,	it
returns	-1.

On	success,	sp_getobject()	returns	an	object	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

The	database	object	returned	by	sp_getobject()	increments	its	reference	counter,	sp_destroy()	can	be	used	to
decrement	it.	This	should	be	considered	for	online	database	close/drop	cases.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

64sp_getobject

Sophia	2.1	Manual

65sp_getobject

NAME

sp_setstring,	sp_getstring,	sp_setint,	sp_getint,	sp_getobject	-	set	or	get	configuration	options

SYNOPSIS

#include	<sophia.h>

int						sp_setstring(void	*object,	const	char	*path,	const	void	*ptr,	int	size);
void				*sp_getstring(void	*object,	const	char	*path,	int	*size);
int						sp_setint(void	*object,	const	char	*path,	int64_t	value);
int64_t		sp_getint(void	*object,	const	char	*path);
void				*sp_getobject(void	*object,	const	char	*path);

DESCRIPTION

For	additional	information	take	a	look	at	the	Configuration	section.

EXAMPLE

void	*env	=	sp_env()
sp_setstring(env,	"sophia.path",	"./sophia",	0);
sp_open(env);

char	key[]	=	"key";
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	"hello	world",	0));
sp_set(db,	o);

int	error_size;
char	*error	=	sp_getstring(env,	"sophia.error",	&error_size);
if	(error)	{
				printf("error:	%s\n",	error);
				free(error);
}

void	*db	=	sp_getobject(env,	"db.test");
sp_drop(db);

RETURN	VALUE

On	success,	sp_setstring()	returns	0.	On	error,	it	returns	-1.

On	success,	sp_getstring()	returns	string	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

All	pointers	returned	by	sp_getstring()	must	be	freed	using	free(3)	function.	Exception	is	sp_document()	object	and
configuration	cursor	document.

On	success,	sp_setint()	returns	0.	On	error,	it	returns	-1.	On	success,	sp_getint()	returns	a	numeric	value.	On	error,	it
returns	-1.

On	success,	sp_getobject()	returns	an	object	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

The	database	object	returned	by	sp_getobject()	increments	its	reference	counter,	sp_destroy()	can	be	used	to
decrement	it.	This	should	be	considered	for	online	database	close/drop	cases.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

66sp_getstring

Sophia	2.1	Manual

67sp_getstring

NAME

sp_setstring,	sp_getstring,	sp_setint,	sp_getint,	sp_getobject	-	set	or	get	configuration	options

SYNOPSIS

#include	<sophia.h>

int						sp_setstring(void	*object,	const	char	*path,	const	void	*ptr,	int	size);
void				*sp_getstring(void	*object,	const	char	*path,	int	*size);
int						sp_setint(void	*object,	const	char	*path,	int64_t	value);
int64_t		sp_getint(void	*object,	const	char	*path);
void				*sp_getobject(void	*object,	const	char	*path);

DESCRIPTION

For	additional	information	take	a	look	at	the	Configuration	section.

EXAMPLE

void	*env	=	sp_env()
sp_setstring(env,	"sophia.path",	"./sophia",	0);
sp_open(env);

char	key[]	=	"key";
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	"hello	world",	0));
sp_set(db,	o);

int	error_size;
char	*error	=	sp_getstring(env,	"sophia.error",	&error_size);
if	(error)	{
				printf("error:	%s\n",	error);
				free(error);
}

void	*db	=	sp_getobject(env,	"db.test");
sp_drop(db);

RETURN	VALUE

On	success,	sp_setstring()	returns	0.	On	error,	it	returns	-1.

On	success,	sp_getstring()	returns	string	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

All	pointers	returned	by	sp_getstring()	must	be	freed	using	free(3)	function.	Exception	is	sp_document()	object	and
configuration	cursor	document.

On	success,	sp_setint()	returns	0.	On	error,	it	returns	-1.	On	success,	sp_getint()	returns	a	numeric	value.	On	error,	it
returns	-1.

On	success,	sp_getobject()	returns	an	object	pointer.	On	error	or	if	the	variable	is	not	set,	it	returns	NULL.

The	database	object	returned	by	sp_getobject()	increments	its	reference	counter,	sp_destroy()	can	be	used	to
decrement	it.	This	should	be	considered	for	online	database	close/drop	cases.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

68sp_getint

Sophia	2.1	Manual

69sp_getint

NAME

sp_open	-	open	or	create

SYNOPSIS

#include	<sophia.h>

int	sp_open(void	*object);

DESCRIPTION

sp_open(env):	create	environment,	open	or	create	pre-defined	databases.

sp_open(database):	create	or	open	database.

Please	take	a	look	at	Configuration,	and	Database	administration	sections.

Common	workflow	is	described	here.

EXAMPLE

void	*env	=	sp_env();
sp_setstring(env,	"sophia.path",	"./storage",	0);
sp_setstring(env,	"db",	"test",	0);
sp_open(env);
void	*db	=	sp_getobject(env,	"db.test");
/*	do	transactions	*/
sp_destroy(env);

RETURN	VALUE

On	success,	sp_open()	returns	0.	On	error,	it	returns	-1.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

70sp_open

NAME

sp_destroy	-	free	or	destroy	an	object

SYNOPSIS

#include	<sophia.h>

int	sp_destroy(void	*object);

DESCRIPTION

The	sp_destroy()	function	is	used	to	free	memory	allocated	by	any	Sophia	object.

EXAMPLE

void	*o	=	sp_document(db);
void	*result	=	sp_get(db,	o);
if	(result)
				sp_destroy(result);

RETURN	VALUE

On	success,	sp_destroy()	returns	0.	On	error,	it	returns	-1.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

71sp_destroy

NAME

sp_error	-	check	error	status

SYNOPSIS

#include	<sophia.h>

int	sp_error(void	*env);

DESCRIPTION

sp_error(env):	check	if	there	any	error	leads	to	the	shutdown.

Additionally,	if	any	sophia	error	description	can	be	accessed	through	sophia.error	field.

int	error_size;
char	*error	=	sp_getstring(env,	"sophia.error",	&error_size);
if	(error)	{
				printf("error:	%s\n",	error);
				free(error);
}

RETURN	VALUE

Returns	1	or	0.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

72sp_error

NAME

sp_poll	-	get	a	completed	asynchronous	request

SYNOPSIS

#include	<sophia.h>

void	*sp_poll(void	*env);

DESCRIPTION

sp_poll(env)

For	additional	information	take	a	look	at	Asynchronous	read	section.

RETURN	VALUE

On	success,	sp_poll()	returns	a	document	handle.	If	there	are	no	completed	requests,	returns	NULL.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

73sp_poll

NAME

sp_drop	-	schedule	an	database	drop	or	an	object	deletion

SYNOPSIS

#include	<sophia.h>

int	sp_drop(void	*object);

DESCRIPTION

sp_drop(database)	Schedule	database	drop.

sp_drop(view)	Drop	a	view.

EXAMPLE

void	*db	=	sp_getobject(env,	"db.test");
sp_drop(db);

RETURN	VALUE

On	success,	sp_drop()	returns	0.	On	error,	it	returns	-1.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

74sp_drop

NAME

sp_set	-	insert	or	replace	operation

SYNOPSIS

#include	<sophia.h>

int	sp_set(void	*object,	void	*document);

DESCRIPTION

sp_set(database,	document):	do	a	single-statement	transaction.

sp_set(transaction,	document):	do	a	key	update	as	a	part	of	multi-statement	transaction.

As	a	part	of	a	transactional	statement	a	key-value	document	must	be	prepared	using	sp_document()	method.	First
argument	of	sp_document()	method	must	be	an	database	object.

Object	must	be	prepared	by	setting	key	and	value	fields,	where	value	is	optional.	It	is	important	that	while	setting	key
and	value	fields,	only	pointers	are	copied.	Real	data	copies	only	during	first	operation.

For	additional	information	take	a	look	at	sp_document(),	sp_begin()	and	Transactions.

EXAMPLE

char	key[]	=	"key";
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	"hello	world",	0));
sp_set(db,	o);

RETURN	VALUE

On	success,	sp_set()	returns	0.	On	error,	it	returns	-1.

Database	object	commit:	(1)	rollback	or	(2)	lock.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

75sp_set

NAME

sp_upsert	-	common	get	operation

SYNOPSIS

#include	<sophia.h>

void	*sp_upsert(void	*object,	void	*document);

typedef	int	(*upsert_callback)(char	**result,
																															char	**key,	int	*key_size,	int	key_count,
																															char	*src,	int	src_size,
																															char	*upsert,	int	upsert_size,
																															void	*arg);

DESCRIPTION

sp_upsert(database,	document):	do	a	single-statement	transaction.

sp_upsert(transaction,	document):	do	a	key	update	as	a	part	of	multi-statement	transaction.

As	a	part	of	a	transactional	statement	a	key-value	document	must	be	prepared	using	sp_document()	method.	First
argument	of	sp_document()	method	must	be	an	database	object.

Object	must	be	prepared	by	setting	key	and	value	fields.	It	is	important	that	while	setting	key	and	value	fields,	only
pointers	are	copied.	Real	data	copies	only	during	first	operation.

Value	field	should	contain	user-supplied	data,	which	should	be	enough	to	implement	custom	update	or	insert	logic.

To	enable	upsert	command,	a	db.database_name.index.upsert	and	optionally	db.database_name.index.upsert_arg
must	be	set	to	callback	function	pointer.

For	additional	information	take	a	look	at	sp_document(),	sp_begin()	and	Transactions	and	Upsert	sections.

EXAMPLE

See	Sophia	repository	upsert	example.

RETURN	VALUE

On	success,	sp_set()	returns	0.	On	error,	it	returns	-1.

Database	object	commit:	(1)	rollback	or	(2)	lock.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

76sp_upsert

https://github.com/pmwkaa/sophia/blob/master/example/upsert.c

NAME

sp_delete	-	delete	operation

SYNOPSIS

#include	<sophia.h>

int	sp_delete(void	*object,	void	*document);

DESCRIPTION

sp_delete(database,	document):	do	a	single-statement	transaction.

sp_delete(transaction,	document):	do	a	key	deletion	as	a	part	of	multi-statement	transaction.

As	a	part	of	a	transactional	statement	a	key-value	document	must	be	prepared	using	sp_document()	method.	First
argument	of	sp_document()	method	must	be	an	database	object.

Object	must	be	prepared	by	setting	key	fields.	Value	is	not	used	for	delete	operation.	It	is	important	that	while	setting	key
fields,	only	pointers	are	copied.	Real	data	copies	only	during	first	operation.

For	additional	information	take	a	look	at	sp_document(),	sp_begin()	and	Transactions.

EXAMPLE

char	key[]	=	"key";
void	*o	=	sp_document(db);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_delete(db,	o);

RETURN	VALUE

On	success,	sp_delete()	returns	0.	On	error,	it	returns	-1.

Database	object	commit:	(1)	rollback	or	(2)	lock.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

77sp_delete

NAME

sp_get	-	common	get	operation

SYNOPSIS

#include	<sophia.h>

void	*sp_get(void	*object,	void	*document);

DESCRIPTION

sp_get(database,	document):	do	a	single-statement	transaction	read.

sp_get(transaction,	document):	do	a	key	search	as	a	part	of	multi-statement	transaction	visibility.

sp_get()	method	returns	an	document	that	is	semantically	equal	to	sp_document(),	but	is	read-only.

For	additional	information	take	a	look	at	sp_begin()	and	Transactions.

EXAMPLE

void	*o	=	sp_document(db);
sp_set(o,	"key",	"hello",	0);
void	*result	=	sp_get(db,	o);
if	(result)	{
				int	valuesize;
				char	*value	=	sp_getstring(result,	"value",	&valuesize);
				printf("%s\n",	value);
				sp_destroy(result);
}

RETURN	VALUE

On	success,	sp_get()	returns	a	document	handle.	If	an	object	is	not	found,	returns	NULL.	On	error,	it	returns	NULL.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

78sp_get

NAME

sp_cursor	-	common	cursor	operation

SYNOPSIS

#include	<sophia.h>

void	*sp_cursor(void	*env);

DESCRIPTION

sp_cursor(env):	create	a	cursor	ready	to	be	used	with	any	database.

For	additional	information	take	a	look	at	Cursor	section.

EXAMPLE

void	*cursor	=	sp_cursor(env);
void	*o	=	sp_document(db);
sp_setstring(o,	"order",	">=",	0);
while	((o	=	sp_get(c,	o)))	{
				char	*key	=	sp_getstring(o,	"key",	NULL);
				char	*value	=	sp_getstring(o,	"value",	NULL);
				printf("%s	=	%s\n",	key,	value);
}
sp_destroy(cursor);

RETURN	VALUE

On	success,	sp_cursor()	returns	cursor	object	handle.	On	error,	it	returns	NULL.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

79sp_cursor

NAME

sp_begin	-	start	a	multi-statement	transaction

SYNOPSIS

#include	<sophia.h>

void	*sp_begin(void	*env);

DESCRIPTION

sp_begin(env):	create	a	transaction

During	transaction,	all	updates	are	not	written	to	the	database	files	until	a	sp_commit()	is	called.	All	updates	that	were
made	during	transaction	are	available	through	sp_get()	or	by	using	cursor.

The	sp_destroy()	function	is	used	to	discard	changes	of	a	multi-statement	transaction.	All	modifications	that	were	made
during	the	transaction	are	not	written	to	the	log	file.

No	nested	transactions	are	supported.

For	additional	information	take	a	look	at	Transactions	and	Deadlock	sections.

EXAMPLE

void	*a	=	sp_getobject(env,	"db.database_a");
void	*b	=	sp_getobject(env,	"db.database_b");

char	key[]	=	"hello";
char	value[]	=	"world";

/*	begin	a	transaction	*/
void	*transaction	=	sp_begin(env);

void	*o	=	sp_document(a);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	value,	sizeof(value));
sp_set(transaction,	o);

o	=	sp_document(b);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	value,	sizeof(value));
sp_set(transaction,	o);

/*	complete	*/
sp_commit(transaction);

RETURN	VALUE

On	success,	sp_begin()	returns	transaction	object	handle.	On	error,	it	returns	NULL.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

80sp_begin

NAME

sp_commit	-	commit	a	multi-statement	transaction

SYNOPSIS

#include	<sophia.h>

int	sp_commit(void	*transaction);

DESCRIPTION

sp_commit(transaction):	commit	a	transaction

The	sp_commit()	function	is	used	to	apply	changes	of	a	multi-statement	transaction.	All	modifications	that	were	made
during	the	transaction	are	written	to	the	log	file	in	a	single	batch.

If	commit	failed,	transaction	modifications	are	discarded.

For	additional	information	take	a	look	at	Transactions	and	Deadlock	sections.

EXAMPLE

void	*a	=	sp_getobject(env,	"db.database_a");
void	*b	=	sp_getobject(env,	"db.database_b");

char	key[]	=	"hello";
char	value[]	=	"world";

/*	begin	a	transaction	*/
void	*transaction	=	sp_begin(env);

void	*o	=	sp_document(a);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	value,	sizeof(value));
sp_set(transaction,	o);

o	=	sp_document(b);
sp_setstring(o,	"key",	key,	sizeof(key));
sp_setstring(o,	"value",	value,	sizeof(value));
sp_set(transaction,	o);

/*	complete	*/
sp_commit(transaction);

RETURN	VALUE

On	success,	sp_commit()	returns	0.	On	error,	it	returns	-1.	On	rollback	1	is	returned,	2	on	lock.

SEE	ALSO

Sophia	API

Sophia	2.1	Manual

81sp_commit

	Introduction
	Build
	Sophia API
	Common Workflow
	Configuration
	How It Works
	Examples
	BSD License
	Version
	Managing Databases
	Anti-Caching
	Persistent Caching
	Persistent RAM Storage
	LRU Mode
	AMQ Filter
	Compession
	Point-in-Time Views
	Snapshot
	Backup and Restore
	Compaction
	Monitoring
	DBMS Integration
	Transactions
	Deadlocks
	Asynchronous Reads
	Upsert
	Cursors
	Sophia
	Memory
	Scheduler
	Compaction
	Performance
	Metric
	View
	Write Ahead Log
	Database
	Backup
	v1.2
	v1.1
	sp_env
	sp_document
	sp_setstring
	sp_setint
	sp_getobject
	sp_getstring
	sp_getint
	sp_open
	sp_destroy
	sp_error
	sp_poll
	sp_drop
	sp_set
	sp_upsert
	sp_delete
	sp_get
	sp_cursor
	sp_begin
	sp_commit

